FCAV/ UNESP Jaboticabal

Disciplina: Química Geral **Assunto:** Sais e Hidrólise Salina

Docente: Profa. Dra. Luciana M. Saran

1. OBJETIVOS

- Discutir as propriedades ácido-base dos sais em soluções aquosas;
- ♣ Discutir como prever qualitativamente o pH de uma solução aquosa de um sal, considerando os íons presentes na composição do mesmo.
- Discutir como estimar o pH de uma solução salina.

2. INTRODUÇÃO

♣ Ácidos: espécies químicas capazes de doar H+.

$$HCI(g) + H_2O(I) \rightarrow H_3O^+(aq) + CI^-(aq)$$

ácido base conjugada

♣ Bases: espécies químicas capazes de receber H+.

$$NH_3(aq) + H_2O(I) \stackrel{\longrightarrow}{\longleftarrow} NH_4^+(aq) + OH^-(aq)$$
base

ácido

conjugado

2. INTRODUÇÃO

A reação entre um ácido e uma base produz um composto iônico denominado sal.

Exemplo:

NaOH(aq) + HCl(aq)
$$\rightarrow$$
 NaCl(aq) + H₂O(l) (base) (ácido) (sal)

Exemplos de Reações de Neutralização

HNO ₃	+	NaOH	\longrightarrow	NaNO ₃	+	H ₂ O
Ácido		Base		Sal		Água
H ⁺ NO ₃		Na ⁺ OH ⁻	ž	$\left[\begin{array}{c} Na^{+} \\ \end{array}\right]_{1}^{+} \left[\begin{array}{c} NO_{3} \\ \end{array}\right]_{1}^{-}$		НОН
H ₂ SO ₄	+,,,	Ca(OH) ₂	\longrightarrow	CaSO ₄	+	2 H ₂ O
Ácido		Base		Sal		Água
\mathbf{H}^{+}		OH ⁻				НОН
SO_4^{2-}		Ca ²⁺		$\begin{bmatrix} Ca^{2+} \\ SO_4^{2-} \end{bmatrix}$		HOII
\mathbf{H}^{+}		OH-				НОН
H ₃ PO ₄	+	3 КОН		K ₃ PO ₄		240
34	•	J ROII		K ₃ 1 O ₄	+	3 H ₂ O
Ácido		Base		Sal		Água
\mathbf{H}^+		$K^+ OH^-$		r		НОН
$H^{+} PO_{4}^{3-}$		K^+ OH^-		$\left[\begin{array}{c} K^{+} \right]_{3} \left[\begin{array}{c} PO_{4} \end{array}\right]_{1}$		НОН
\mathbf{H}^{+}		K ⁺ OH ⁻				НОН

TABELA 1: Exemplos de sais formados por reações de neutralização.

Base	Ácido	Fórmula do Sal	Nome do Sal
NaOH	H ₂ SO ₄	Na ₂ SO ₄	sulfato de sódio
KOH	H ₃ PO ₄	K ₃ PO ₄	fosfato de potássio
$Mg(OH)_2$	$HC_2H_3O_2$	$Mg(C_2H_3O_2)_2$	acetato de magnésio
Al(OH) ₃	HNO ₃	$AI(NO_3)_3$	nitrato de alumínio

EXERCÍCIO 1: Equacione a reação do HCl com cada um dos compostos a seguir:

- a) Na₂CO₃;
- b) NaOH;
- c) NH₃;
- d) CH_3NH_2 ;
- e) NaHCO₃.

3. PROPRIEDADES ÁCIDO-BASE DE SOLUÇÕES DE SAIS

Embora a reação entre um ácido e uma base seja denominada "neutralização", a solução do sal resultante não é necessariamente neutra.

- NaCl(aq): solução neutra (pH = 7)
- NH₄Cl(aq): solução ácida (pH < 7)</p>
- ♣ CH₃COONa: solução básica (pH > 7)

3. PROPRIEDADES ÁCIDO-BASE DE SOLUÇÕES DE SAIS

A solução de um sal apresentará pH diferente de 7 se os ions presentes na sua composição sofrerem hidrólise.

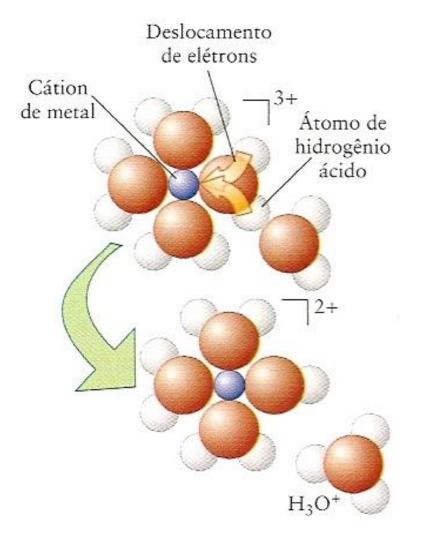
♣ Solução de NH₄Cl:

$$NH_4^+(aq) + H_2O(I) \longrightarrow NH_3(aq) + H_3O^+(aq)$$
 ácido conjugado da base fraca NH_3

♣ Solução de CH₃COONa:

$$CH_3COO^-(aq) + H_2O(I) \rightarrow CH_3COOH(aq) + OH^-(aq)$$

base conjugada do ácido fraco CH₃COOH


M

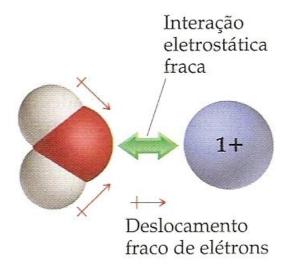
3. PROPRIEDADES ÁCIDO-BASE DE SOLUÇÕES DE SAIS

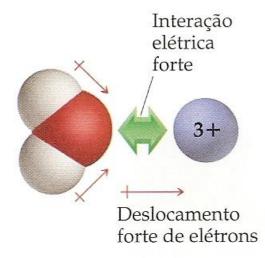
Os sais que formam soluções ácidas têm um cátion capaz de reagir com a água aumentando a concentração de íons H₃O+. Exemplos: NH₄Cl e AlCl₃.

$$AICl_3(aq) \rightarrow Al^{3+}(aq) + 3Cl^{-}(aq)$$

fon pequeno,
com carga elevada

$$[AI(H_2O)_6]^{3+} + H_2O(I) \rightarrow [AI(H_2O)_5(OH)]^{2+}(aq) + H_3O^{+}(aq)$$


- As moléculas de H₂O agem como bases de Lewis e compartilham elétrons com o íon Al³⁺.
- ♣ Essa perda parcial de elétrons enfraquece as ligações O – H e permite que um ou mais íons H+ sejam eliminados das moléculas de água ligadas ao Al³+.


FIGURA 1: Representação do comportamento ácido do Al³⁺ hidratado. **(FONTE:**

ATKINS, 2006: p. 482).

TABELA 2: Caráter de cátions comuns em meio aquoso.

CARÁTER	EXEMPLOS	
ÁCIDO		
 ácidos conjugados de bases 	íon amônio, NH ₄ +	
fracas	íon metilamínio, CH ₃ NH ₃ +	
	íon anilínio, C ₆ H ₅ NH ₃ +	
	Fe ³⁺ como Fe(H ₂ O) ₆ ³⁺	
com carga elevada	Cr^{3+} como $Cr(H_2O)_6^{3+}$	
	Al^{3+} como $Al(H_2O)_6^{3+}$	
	Fe ²⁺ como Fe(H ₂ O) ₆ ²⁺	
	Cu^{2+} como $Cu(H_2O)_6^{2+}$	
	Ni ²⁺ como Ni(H ₂ O) ₆ ²⁺	
NEUTRO		
♣ cátions dos Grupos 1 e 2	Li ⁺ , Na ⁺ , K ⁺ , Mg ²⁺ , Ca ²⁺	
↓ cátions de metal com carga +1	Ag ⁺	
BÁSICO	nenhum	

A figura ao lado demonstra que a interação entre uma molécula de água e um íon menor, de maior carga, é muito mais forte, fazendo com que o íon hidratado seja mais ácido.

FIGURA 2: Interação de uma molécula de H_2O com um cátion de carga +1 e com um cátion de carga +2 (**FONTE: BROWN, 2005 : p. 600**).

Sal: NaNO₃ $Ca(NO_3)_2$ $Zn(NO_3)_2$ $AI(NO_3)_3$ Azul de Alaranjado Indicador: Azul de Vermelho bromotimol de metila de metila bromotimol 6,9 3,5 pH estimado: 7,0 5,5 125mi

FIGURA 3: Valores de pH de soluções 1,0 mol L⁻¹ de uma série de sais de nitrato, estimados usando indicadores ácido-base. Da esquerda para a direita: NaNO₃(aq), Ca(NO₃)₂(aq), Zn(NO₃)₂(aq) e Al(NO₃)₃(aq).

(FONTE: BROWN, 2005 : p. 601)

2

3. PROPRIEDADES ÁCIDO-BASE DE SOLUÇÕES DE SAIS

Os sais que formam soluções básicas têm um ânion capaz de reagir com a água aumentado a concentração de íons OH⁻. Exemplos: CH₃COONa e KCN.

$$KCN(aq) \rightarrow K^{+}(aq) + CN^{-}(aq)$$

base conjugada
do ácido fraco HCN

$$CN^{-}(aq) + H_2O(I) \rightarrow HCN(aq) + OH^{-}(aq)$$

TABELA 3: Caráter de ânions comuns em meio aquoso.

CARÁTER	EXEMPLOS	
ÁCIDO ↓ comportamento raro	HSO ₄ -, H ₂ PO ₄ -	
NEUTRO + bases conjugadas de ácidos fortes	Cl ⁻ , Br ⁻ , I ⁻ , NO ₃ ⁻ , ClO ₄ ⁻	
BÁSICO	F ⁻ , O ²⁻ , OH ⁻ , S ²⁻ , CN ⁻ , CO ₃ ²⁻ , PO ₄ ³⁻ , NO ₂ ⁻ , CH ₃ CO ₂ ⁻ , outros carboxilatos	

4. O pH DE SOLUÇÕES DE SAIS

- ♣ Se o sal for formado por:
- **1.** Um cátion e um ânion que não reagem com água, espera-se que a solução aquosa do sal exiba pH = 7.
- 2. Um ânion que reage com água, produzindo OH- e um cátion que não reage com água, a solução do sal apresentará pH > 7.
- **3.** Um cátion que reage com água, produzindo H_3O^+ e um ânion que não reage com água, a solução do sal apresentará pH < 7.

4. O pH DE SOLUÇÕES DE SAIS

- ♣ Se o sal for formado por:
- **4.** Um cátion e um ânion que reagem com água, haverá produção de H₃O⁺ e OH⁻ e neste caso, dependendo das quantidades relativas destas espécies, a solução do sal poderá ser ácida, básica ou neutra.

RESUMINDO:

Sais de Ácidos Fortes e Bases Fortes: têm caráter neutro.

Exemplos:

Cloreto de Sódio, NaCl Cloreto de Potássio, KCl Nitrato de Sódio, NaNO₃ Brometo de Potássio, KBr Perclorato de Sódio, NaClO₄

A dissolução desses sais em água resultará em uma solução neutra, ou seja, que apresentará pH = 7,00.

Sais de Ácidos Fracos e Bases Fortes: têm caráter básico ou alcalino.

Exemplos:

Acetato de Sódio, NaCH₃COO Cianeto de Potássio, KCN Nitrito de Sódio, NaNO₂ Fosfato de Sódio, Na₃PO₄ Bicarbonato de Sódio, NaHCO₃

A dissolução desses sais em água resultará em uma solução alcalina, ou seja, que apresentará pH >7,00.

Sais de Ácidos Fortes e Bases Fracas: têm caráter ácido.

Exemplos:

Cloreto de Amônio, NH₄Cl Nitrato de Amônio, NH₄NO₃

A dissolução desses sais em água resultará em uma solução ácida, ou seja, que apresentará pH < 7,00.

EXERCÍCIO 2: Determine se as soluções aquosas dos sais a seguir, são *ácidas*, *básicas* ou *neutras*.

- a) brometo de amônio, NH₄Br;
- b) perclorato de potássio, KClO₄;
- c) cianeto de potássio, KCN;
- d) cloreto férrico, FeCl₃;
- e) nitrato de alumínio, $Al(NO_3)_3$;
- f) carbonato de sódio, Na₂CO₃.

EXERCÍCIO 3: a metilamina, CH₃NH₂, é uma substância que aparece na urina dos cães após terem ingerido carne. Também é encontrada em algumas plantas. O cloreto de metilamínio, CH₃NH₃Cl, hidrolisa-se em água produzindo metilamina. Estime o pH de uma solução aquosa de CH₃NH₃Cl 0,1 mol L⁻¹.

$$CH_3NH_3^+(aq) + H_2O(I) \implies CH_3NH_2(aq) + H_3O^+(aq)$$

 $(K_a = 2.8 \times 10^{-11})$

EXERCÍCIO 4: estime o pH de uma solução de acetato de sódio 0,15 mol L⁻¹.

M

5. REFERÊNCIAS

- ♣ ATKINS, P.; JONES, L. Princípios de Química: questionando a vida moderna e o meio ambiente. 3. ed. Porto Alegre:Bookman, 2006.
- ♣ BROWN, T. L. Química, a ciência central. 9. ed. São Paulo:Pearson Prentice Hall, 2005.
- ♣ KOTZ, J. C. Química Geral e Reações Químicas. 5. ed. São Paulo: Pioneira Thomson Learning, 2005.