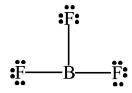
ASSUNTO: Geometria e Polaridade Molecular - Resolução dos Exercícios da Lista 2

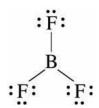
EXERCÍCIOS_LISTA 2.

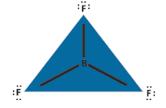
Para as espécies químicas a seguir **a**) BF_3 ; **b**) CH_4 ; **c**) PCl_5 ; **d**) SF_6 ; **e**) NH_4^+ ; **f**) PO_4^{3-} ; **g**) NH_3 ; **h**) H_2O ; **i**) H_3O^+ : (i) desenhe a estrutura de Lewis; (ii) preveja o arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo central; (iii) preveja o arranjo espacial ou geometria dos átomos (iv) preveja se cada espécie química será polar ou apolar. Justifique sua resposta.

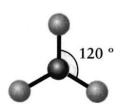
Resolução:


a) BF_3

Configuração eletrônica ₅B: 1s² 2s²2p¹ ⇒ 3 elétrons de valência


Configuração eletrônica ${}_{9}F: 1s^{2} 2s^{2}2p^{5} \Rightarrow 7$ elétrons de valência


 N° total de elétrons de valência na molécula $BF_3 = 3 \times 1(B) + 7 \times 3(F) = 24 \ e^-$ de valência na molécula $BF_3 \Rightarrow 12$ pares de e^-


(i) Estrutura de Lewis para a molécula BF₃:

- (ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de B, que é o átomo central na molécula BF₃ ⇒ triangular ou trigonal planar, visto que ao redor do B há 3 pares de elétrons, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.
- (iii) Arranjo espacial ou geometria dos átomos na molécula BF₃: triangular ou trigonal planar, visto que os 3 pares de elétrons ao redor do B, são pares ligados ou compartilhados, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.



(iv) Eletronegatividade, χ :

$$\chi(B) = 2.0$$

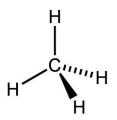
$$\chi(F) = 4.0$$

 $\Delta \chi = \chi(F) - \chi(B) = 4,0 - 2,0 = 2,0 \Rightarrow$ a ligação covalente entre os átomos de B e F é uma ligação covalente polar, na qual os átomos de F mais eletronegativos do que o de B, atraem para mais próximo de si os pares de e^{-1} compartilhados com o B. Assim, os átomos de F terão carga parcial negativa (δ -) e o de B terá carga parcial positiva (δ +).

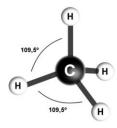
 $\mu = 0 \Rightarrow$ molécula apolar

Ressalta-se que moléculas com ligações covalentes polares não necessariamente serão polares. No caso da molécula BF₃, embora suas ligações interatômicas sejam polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta\chi \neq 0$, a molécula é apolar, pois apresenta geometria triangular planar com todos os átomos ao redor do B sendo idênticos, isto é, do mesmo elemento químico. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é zero.

b) CH₄

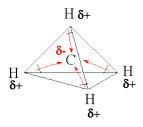

Configuração eletrônica ₁H: 1s¹ ⇒ 1 elétron de valência

Configuração eletrônica $_6$ C: $1s^2 2s^2 2p^2 \Rightarrow 4$ elétrons de valência


 N^o total de elétrons de valência na molécula $CH_4 = 1 \times 4(H) + 4 \times 1(C) = 8$ e^- de valência na molécula $CH_4 \Rightarrow 4$ pares de e^-

(i) Estrutura de Lewis para a molécula CH₄:

- (ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de C, que é o átomo central na molécula CH₄ ⇒ tetraédrica, visto que ao redor do C há 4 pares de elétrons, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.
- (iii) Arranjo espacial ou geometria dos átomos na molécula CH₄: tetraédrica, visto que os 4 pares de elétrons ao redor do C, são pares ligados ou compartilhados, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.



(iv) Eletronegatividade, χ :

$$\chi(H) = 2.1$$

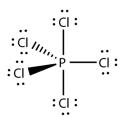
$$\chi(C) = 2.5$$

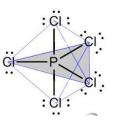
 $\Delta \chi = \chi(C) - \chi(H) = 2.5 - 2.1 = 0.4 \Rightarrow$ a ligação covalente entre os átomos de C e H é uma ligação covalente fracamente polar, na qual o C mais eletronegativo do que o H, atrai para mais próximo de si os pares de e^- compartilhados com os átomos de H. Assim, o C terá carga parcial negativa (δ -) e os átomos de H terão carga parcial positiva (δ +).

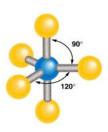
 $\mu = 0 \Rightarrow$ molécula apolar

No caso da molécula CH_4 , embora suas ligações interatômicas sejam polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta \chi \neq 0$, a molécula é apolar, pois apresenta geometria tetraédrica, sendo todos os átomos ao redor do C idênticos. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é zero.

c) PCl₅

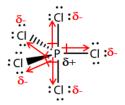

Configuração eletrônica ₁₅P: $1s^2 2s^2 2p^6 3s^2 3p^3 \Rightarrow 5$ elétrons de valência


Configuração eletrônica $_{17}$ Cl: $1s^2 2s^2 2p^6 3s^2 3p^5 \Rightarrow 7$ elétrons de valência


 N° total de elétrons de valência na molécula $PCl_5 = 5 \times 1(P) + 7 \times 5(F) = 40 \ e^-$ de valência na molécula $PCl_5 \Rightarrow 20$ pares de e^-

(i) Estrutura de Lewis para a molécula PCl₅:

- (ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de P, que é o átomo central na molécula $PCl_5 \Rightarrow$ bipirâmide triangular ou bipiramidal triangular, visto que ao redor do P há 5 pares de elétrons, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.
- (iii) Arranjo espacial ou geometria dos átomos na molécula PCl₅: bipirâmide ou bipiramidal triangular, visto que os 5 pares de elétrons ao redor do P, são pares ligados ou compartilhados, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.



(iv) Eletronegatividade, χ :

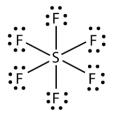
$$\chi(P) = 2,2$$

$$\chi(C1) = 3.2$$

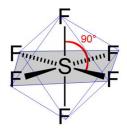
 $\Delta \chi = \chi(\text{Cl}) - \chi(P) = 3,2 - 2,2 = 1,0 \Rightarrow$ a ligação covalente entre os átomos de P e Cl é uma ligação covalente polar, na qual os átomos de Cl mais eletronegativos do que o de P, atraem para mais próximo de si os pares de e^- compartilhados com o átomo de P. Assim, os átomos de Cl terão carga parcial negativa (δ -) e o átomo de P terá carga parcial positiva (δ +).

µ=0 ⇒ molécula apolar

No caso da molécula PCl_5 , embora suas ligações interatômicas sejam polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta\chi \neq 0$, a molécula é apolar, pois apresenta geometria bipiramidal triangular, sendo todos os átomos ao redor do P idênticos. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é zero.


d) SF₆

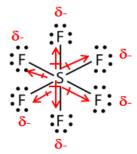
Configuração eletrônica $_{16}S: 1s^2 2s^2 2p^6 3s^2 3p^4 \Rightarrow 6$ elétrons de valência


Configuração eletrônica ${}_9F: 1s^2 2s^2 2p^5 \Rightarrow 7$ elétrons de valência

 N^o total de elétrons de valência na molécula $SF_6 = 6 \times 1(S) + 7 \times 6(F) = 48 \ e^-$ de valência na molécula $SF_6 \Rightarrow 24$ pares de e^-

(i) Estrutura de Lewis para a molécula SF₆:

- (ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de S, que é o átomo central na molécula $SF_6 \Rightarrow$ bipirâmide quadrada ou bipiramidal quadrangular, visto que ao redor do S há 6 pares de elétrons, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.
- (iii) Arranjo espacial ou geometria dos átomos na molécula SF_6 : bipirâmide quadrada ou bipiramidal quadrangular, visto que os 6 pares de elétrons ao redor do S, são pares ligados ou compartilhados, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.



(iv) Eletronegatividade, χ :

$$\chi(S) = 2.6$$

$$\chi(F) = 4.0$$

 $\Delta \chi = \chi(F) - \chi(S) = 4,0 - 2,6 = 1,4 \Rightarrow$ a ligação covalente entre os átomos de S e F é uma ligação covalente polar, na qual os átomos de F mais eletronegativos do que o de S atraem para mais próximo de si os pares de e^- compartilhados com o átomo de S. Assim, os átomos de F terão carga parcial negativa (δ -) e o átomo de S terá carga parcial positiva (δ +).

µ=0 ⇒ molécula apolar

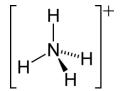
No caso da molécula SF_6 , embora suas ligações interatômicas sejam polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta\chi \neq 0$, a molécula é apolar, pois apresenta geometria bipiramidal quadrangular, sendo todos os átomos ao redor do S idênticos. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é zero.

e) NH₄⁺

Configuração eletrônica ₁H: 1s¹ ⇒ 1 elétron de valência

Configuração eletrônica $_7N$: $1s^2 2s^22p^3 \Rightarrow 5$ elétrons de valência

 N^{o} total de elétrons de valência no íon $NH_{4}^{+} = [4 \times 1(H) + 5 \times 1(N) - 1 \ e^{-}] = 8 \ e^{-}$ de valência no íon poliatômico $NH_{4}^{+} \Rightarrow 4$ pares de e^{-}

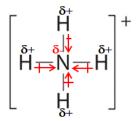

(i) Estrutura de Lewis para o íon NH₄⁺:

$$\begin{bmatrix} H \\ - \\ H - N - H \\ - \\ H \end{bmatrix}^{+}$$

(ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de N, que é o átomo central no íon NH₄⁺ ⇒ tetraédrica, visto que ao redor do N há 4 pares de elétrons, sendo o arranjo espacial

mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.

(iii) Arranjo espacial ou geometria dos átomos no íon $\mathrm{NH_4}^+$: tetraédrica, visto que os 4 pares de elétrons ao redor do N, são pares ligados ou compartilhados, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.



(iv) Eletronegatividade, χ :

$$\chi(H) = 2.1$$

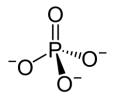
$$\chi(N) = 3.0$$

 $\Delta \chi = \chi(N) - \chi(H) = 3.0 - 2.1 = 0.9 \Rightarrow$ a ligação covalente entre os átomos de N e H é uma ligação covalente polar, na qual o átomo de N mais eletronegativo do que os de H, atrai para mais próximo de si os pares de e^{-1} compartilhados com os átomos de H. Assim, o átomo de N terá carga parcial negativa (δ -) e os átomos de H terão carga parcial positiva (δ +).

µ=0 ⇒ molécula apolar

No caso do íon NH_4^+ , embora suas ligações interatômicas sejam polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta\chi \neq 0$, o íon é apolar, pois apresenta geometria tetraédrica, sendo todos os átomos ao redor do N idênticos. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é zero.

f) PO₄³-


Configuração eletrônica ₁₅P: $1s^2 2s^2 2p^6 3s^2 3p^3 \Rightarrow 5$ elétrons de valência

Configuração eletrônica $_8O: 1s^2 2s^2 2p^4 \Rightarrow 6$ elétrons de valência

N° total de elétrons de valência no íon $PO_4^{3-} = [5 \times 1(P) + 6 \times 4(O) + 3 e^{-}] = 32 e^{-}$ de valência no íon poliatômico $PO_4^{3-} \Rightarrow 16$ pares de e^{-}

(i) Estrutura de Lewis para o íon PO₄³⁻:

- (ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de P, que é o átomo central no íon $PO_4^{3-} \Rightarrow$ tetraédrica, embora ao redor do P existam 5 pares de elétrons, dos quais dois pares de e^- por estarem entre os mesmos dois átomos (ligação dupla P = O), são contabilizados como se fossem um par. Desta forma, o arranjo espacial mencionado é o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.
- (iii) Arranjo espacial ou geometria dos átomos no íon PO₄³⁻: tetraédrica, pois todos os pares de elétrons ao redor de P estão ligados ou compartilhados, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.

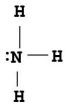
(iv) Eletronegatividade, χ :

$$\chi(P) = 2.2$$

$$\chi(O) = 3.5$$

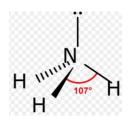
 $\Delta \chi = \chi(O) - \chi(P) = 3.5 - 2.2 = 1.3 \Rightarrow$ a ligação covalente entre os átomos de P e O é uma ligação covalente polar, na qual os átomos de O mais eletronegativos do que o de P, atraem para mais próximo de si os pares de e^{-1} compartilhados com o átomo de P. Assim, os átomos de O terão carga parcial negativa (δ -) e o átomo de P terá carga parcial positiva (δ +).

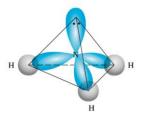
No íon PO_4^{3-} , embora as ligações interatômicas sejam polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta \chi \neq 0$, a molécula é apolar, pois apresenta geometria tetraédrica, sendo todos os átomos ao redor do P idênticos. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é zero.

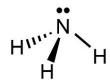

g) NH₃

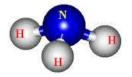
Configuração eletrônica $_1H: 1s^1 \Rightarrow 1$ elétron de valência

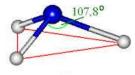
Configuração eletrônica $_7N$: $1s^2 2s^2 2p^3 \Rightarrow 5$ elétrons de valência


 N° total de elétrons de valência na molécula $NH_3 = [3 \times 1(H) + 5 \times 1(N)] = 8$ e^{-} de valência na molécula $NH_3 \Rightarrow 4$ pares de e^{-}

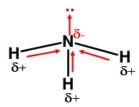

(i) Estrutura de Lewis para a molécula NH₃:


(ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de N, que é o átomo central na molécula NH₃ ⇒ tetraédrica, visto que ao redor do N há 4 pares de elétrons. Assim, o arranjo espacial


mencionado é o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.



(iii) Arranjo espacial ou geometria dos átomos na molécula NH₃: piramidal triangular, visto que ao redor do N há 4 pares de elétrons dos quais 3 são compartilhados e 1 par está isolado ou não compartilhado, sendo o arranjo espacial mencionado o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.



(iv) Eletronegatividade, χ :

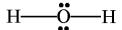
$$\chi(H) = 2,1$$

$$\chi(N) = 3.0$$

 $\Delta \chi = \chi(N) - \chi(H) = 3,0 - 2,1 = 0,9 \Rightarrow$ a ligação covalente entre os átomos de N e H é uma ligação covalente polar, na qual o átomo de N mais eletronegativo do que os de H, atrai para mais próximo de si os pares de e^{-1} compartilhados com os átomos de H. Assim, o átomo de N terá carga parcial negativa (δ -) e os átomos de H terão carga parcial positiva (δ +).

µ≠0 ⇒ molécula polar

No caso da molécula NH₃, suas ligações interatômicas são polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta \chi \neq 0$, e a molécula também é polar, pois apresenta geometria piramidal triangular. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é diferente de zero.


h) H₂O

Configuração eletrônica ₁H: 1s¹ ⇒ 1 elétron de valência

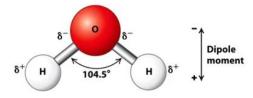
Configuração eletrônica $_8O: 1s^2 2s^2 2p^4 \Rightarrow 6$ elétrons de valência

 N° total de elétrons de valência na molécula $H_2O = [2\times 1(H) + 6\times 1(O)] = 8$ e^{-} de valência na molécula $H_2O \Rightarrow 4$ pares de e^{-}

(i) Estrutura de Lewis para a molécula H₂O:

(ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de O, que é o átomo central na molécula H₂O ⇒ tetraédrica, visto que ao redor do O há 4 pares de elétrons. Assim, o arranjo espacial mencionado é o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.

(iii) Arranjo espacial ou geometria dos átomos na molécula H₂O: angular, visto que ao redor do O há 4 pares de elétrons, dos quais 2 pares estão ligados ou compartilhados e, os outros 2 estão isolados ou não compartilhados.



(iv) Eletronegatividade, χ :

$$\chi(H) = 2,1$$

$$\chi(N) = 3.5$$

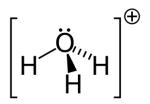
 $\Delta \chi = \chi(O) - \chi(H) = 3.5 - 2.1 = 1.4 \Rightarrow$ a ligação covalente entre os átomos de O e H é uma ligação covalente polar, na qual o átomo de O mais eletronegativo do que os de H, atrai para mais próximo de si os pares de e^{-1} compartilhados com os átomos de H. Assim, o átomo de O terá carga parcial negativa (δ -) e os átomos de H terão carga parcial positiva (δ +).

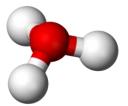
µ≠0 ⇒ molécula polar

No caso da molécula H_2O , suas ligações interatômicas são polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta\chi \neq 0$, e a molécula também é polar, pois apresenta geometria angular. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é diferente de zero.

i) H₃O⁺

Configuração eletrônica $_1H: 1s^1 \Rightarrow 1$ elétron de valência


Configuração eletrônica $_8O$: $1s^2 2s^22p^4 \Rightarrow 6$ elétrons de valência


 N° total de elétrons de valência no íon $H_3O^+ = [3\times1(H) + 6\times1(O) - 1 \ e^-] = 8 \ e^-$ de valência no íon $H_3O^+ \Rightarrow 4$ pares de e^-

(i) Estrutura de Lewis para o íon H₃O⁺:

$$\begin{bmatrix} \mathbf{H} - \ddot{\mathbf{O}} - \mathbf{H} \\ \mathbf{H} \end{bmatrix}^{+}$$

- (ii) Arranjo espacial ou geometria dos pares de elétrons de valência ao redor do átomo de O, que é o átomo central no íon $H_3O^+ \Rightarrow$ tetraédrica, visto que ao redor do O há 4 pares de elétrons. Assim, o arranjo espacial mencionado é o que possibilitará o maior distanciamento entre esses pares eletrônicos, minimizando as repulsões entre os mesmos.
- (iii) Arranjo espacial ou geometria dos átomos no íon H₃O⁺: piramidal triangular, visto que ao redor do O há 4 pares de elétrons, dos quais 3 pares estão ligados ou compartilhados e, o outro, está isolado ou não compartilhado.

(iv) Eletronegatividade, χ :

$$\chi(H) = 2,1$$

$$\chi(N) = 3.5$$

 $\Delta \chi = \chi(O) - \chi(H) = 3.5 - 2.1 = 1.4 \Rightarrow$ a ligação covalente entre os átomos de O e H é uma ligação covalente polar, na qual o átomo de O mais eletronegativo do que os de H, atrai para mais próximo de si os pares de e^- compartilhados com os átomos de H. Assim, o átomo de O terá carga parcial negativa (δ -) e os átomos de H terão carga parcial positiva (δ +).

No íon H_3O^+ , as ligações interatômicas são polares, visto que, a diferença de eletronegatividade entre os átomos envolvidos nas ligações não é nula, ou seja, $\Delta\chi \neq 0$, e a molécula também é polar, pois apresenta geometria piramidal triangular. Sendo assim, o seu momento de dipolo ou momento dipolar (μ) é diferente de zero.

Exercícios Complementares

- 1. Em cada par a seguir, qual é a ligação *mais polar*? Explique. Para a ligação mais polar de cada par, use os símbolos δ + e δ para ilustrar o dipolo resultante da ligação.
 - a) H-F ou H-Cl
 - **b)** N-H ou O-H
 - c) N-O ou O-S
 - **d)** H H ou Cl C

Eletronegatividade, χ : H – 2,1; Cl – 3,0; F – 4,0; N – 3,0; O – 3,5; C – 2,5; S – 2,5.

- **2.** Desenhe a estrutura de Lewis e preveja a geometria dos pares de elétrons ao redor do átomo central das espécies químicas a seguir, a geometria de cada molécula ou íon poliatômico e se a molécula ou o íon é polar ou apolar.
 - a) CCl₄
 - b) H₂S
 - c) CS₂
 - d) NF₃
 - e) SF₄
 - f) SiO₂
 - g) SO₃²-
 - h) HOF

Elemento	Número Atômico (Z)	Eletronegatividade (χ)
Hidrogênio, H	1	2,2
Carbono, C	6	2,5
Cloro, Cl	17	3,0
Enxofre, S	16	2,5
Nitrogênio, N	7	3,0
Flúor, F	9	4,0
Silício, Si	14	1,8
Oxigênio, O	8	3,5