Equilíbrio Ácido-Base - Exercícios Resolvidos

- A finalidade deste material é fornecer subsídio para que o estudante possa resolver os exercícios da lista, que aborda o assunto "Equilíbrio Ácido-Base". Entretanto, inicialmente, eu recomendo a leitura dos documentos intitulados "Ácidos e Bases I" e "Ácidos e Bases II".
- As vídeo-aulas 6, 7, 8 e 9, listadas no quadro abaixo, complementam os documentos supracitados.

Vídeo Aula	Assunto	Link	Duração
06	Autoionização da água	https://youtu.be/5QntSEd7uJw	12min30s
07	Ácidos e bases: modelo de Arrhenius	https://youtu.be/5baewt5hYQM	7min08s
08	Ácidos e bases: modelo de Bronsted-Lowry	https://youtu.be/DuYfG-ex2Rk	8min12s
09	Definição de pH	https://youtu.be/WBCzhbUudno	13min18s

1. Em cada reação ácido-base a seguir, identifique os pares de ácido e base conjugada.

a)
$$CH_3CO_2H(aq) + C_5H_5N(aq) \rightarrow CH_3CO_2(aq) + C_5H_5NH(aq)$$

b)
$$N_2H_4(aq) + HSO_4(aq) \rightarrow N_2H_5(aq) + SO_4(aq)$$

Lembremos que de acordo com o **modelo de Bronsted-Lowry** para ácidos e bases, os ácidos são doadores de H⁺ e as bases são aceptoras de H⁺. Devemos nos basear em tal modelo para resolver o exercício 1.

Resolução:

Item a.

Ácido	Base-Conjugada	
CH ₃ CO ₂ H	CH ₃ CO ₂	
$C_5H_5NH^+$	C_5H_5N	

Item b.

Ácido	Base-Conjugada		
HSO ₄	SO_4^{2-}		
$N_2 H_5^{+}$	N_2H_4		

2. Diversos ácidos aparecem a seguir, com as equações de ionização e respectivas constantes de equilíbrio.

$$\begin{split} HF(aq) + H_2O(l) &\iff H_3O^+(aq) + F^-(aq) \\ NH_4^+(aq) + H_2O(l) &\iff H_3O^+(aq) + NH_3(aq) \\ CH_3CO_2H(aq) + H_2O(l) &\iff H_3O^+(aq) + CH_3CO_2^-(aq) \\ K_a &= 5,6 \times 10^{-10} \\ K_a &= 1,8 \times 10^{-5} \end{split}$$

- **a**) Para cada equilíbrio de ionização escreva a expressão matemática da respectiva constante de equilíbrio.
- **b)** Calcule o pK_a de cada ácido.
- c) Qual o ácido mais forte e qual o mais fraco? Justifique a sua resposta.
- **d**) Qual dos três ácidos, HF, NH₄⁺ ou CH₃CO₂H, quando solubilizado em água, produzirá solução de pH mais elevado? Justifique a sua resposta.

Resolução:

Item a.

Para o equilíbrio de ionização do ácido fluorídrico, HF:

$$K_a = \frac{[H_3O^+] \cdot [F^-]}{[HF]} = 7.2 \times 10^{-4}$$

Para o equilíbrio de ionização do íon amônio, NH₄⁺:

$$K_a = \frac{[H_3O^+] \cdot [NH_3]}{[NH_4^+]} = 5.6 \times 10^{-10}$$

Para o equilíbrio de ionização do ácido etanoico ou acético, CH₃CO₂H:

$$K_a = \frac{[H_3O^+] \cdot [CH_3CO_2^-]}{[CH_3CO_2H]} = 1.8 \times 10^{-5}$$

b)
$$pK_a = -\log K_a \implies K_a = 10^{-pK_a}$$

$$pK_a(HF) = -\log 7.2 \times 10^{-4} \implies pK_a(HF) = 3.14$$

$$pK_a(NH_4^+) = -\log 5.6 \times 10^{-10} \implies pK_a(NH_4^+) = 9.25$$

$$pK_a(CH_3CO_2H) = -\log 1.8 \times 10^{-5} \implies pK_a(CH_3CO_2H) = 4.74$$

- c) O ácido mais forte é o HF que apresenta o a maior K_a e em consequência disso o menor pK_a e o ácido mais fraco é o íon amômio, NH_4^+ , que tem o menor K_a e como resultado o maior pK_a .
- d) O íon amônio por ser o ácido mais fraco dentre os três que estão sendo considerados é o que estará menos ionizado em solução de forma que a sua solução é a que apresentará a menor concentração hidrogeniônica, isto é, a menor concentração do íon H₃O⁺ e, consequentemente o maior pH, visto que, quanto menor a concentração hidrogeniônica em solução, maior será o pH da mesma.

- 3. Calcule o pH a 25°C das soluções a seguir que apresentam concentração inicial (de ácido ou base) igual a 0,15 mol L⁻¹:
 - a) solução de ácido nítrico;
 - b) solução de hidróxido de potássio;
 - c) solução de hidróxido de cálcio;
 - **d**) solução de ácido acético ($K_a = 1,75 \times 10^{-5}$);
 - e) solução de amônia ($K_b = 1,75 \times 10^{-5}$).

Lembremos que:

- Por definição, o pH de uma solução é calculado de acordo com a seguinte expressão matemática: $pH = -log [H_3O^+]$.
- Assim, o cálculo do pH de uma solução requer que saibamos a concentração hidrogeniônica presente na mesma, isto é, necessitamos da concentração molar do íon hidrônio ou hidroxônio (H₃O⁺) em tal solução.
- Em meio aquoso, os ácidos sofrem ionização produzindo H₃O⁺. O quão ionizado o ácido estará, ou seja, se o ácido estará parcialmente ou totalmente ionizado dependerá se o mesmo é fraco ou forte, respectivamente.

Resolução:

a) Solução de ácido nítrico $0.15 \text{ mol } L^{-1} \Rightarrow pH = ?$

Ácido nítrico, HNO_3 , é um ácido monoprótico forte. Monoprótico por que tem apenas um hidrogênio ionizável e forte por que em solução estará completamente ionizado, ou seja, existirá apenas como H_3O^+ e NO_3^- . Portanto, não teremos o ácido na forma molecular.

$$HNO_3(aq) + H_2O(1) \rightarrow H_3O^+(aq) + NO_3^-(aq)$$

Considerando o exposto e a concentração inicial do HNO₃ em solução, a qual é 0,15 mol L^{-1} , teremos em tal solução $[H_3O^+] = 0,15$ mol L^{-1} e $[NO_3^-] = 0,15$ mol L^{-1} .

Portanto:

pH = - log $0.15 \Rightarrow$ pH = - (- 0.82) \Rightarrow pH = $0.82 \Rightarrow$ pH de uma solução de HNO₃ cuja concentração inicial deste ácido é 0.15 mol L^{-1} .

b) solução de hidróxido de potássio $0.15 \text{ mol } L^{-1} \Rightarrow pH = ?$

Hidróxido de potássio, KOH, é uma base forte, que em meio aquoso estará totalmente dissociada em K^+ e OH^- . Uma vez que o composto é uma base, prevê-se que na solução do mesmo haverá predominância de OH^- (íon hidróxido) em detrimento do H_3O^+ .

Sabendo qual a concentração molar do OH⁻ na solução de uma base é possível calcular o seu pOH e a partir deste, calcula-se o pH da solução.

Dissociação do KOH em meio aquoso:

$$KOH(aq) \ \to \ K^{\scriptscriptstyle +}(aq) \ + \ OH^{\scriptscriptstyle -}(aq)$$

Considerando que o KOH é uma base forte e, portanto, encontra-se totalmente dissociada em solução e que a concentração inicial da base é 0.15 mol L^{-1} , teremos em tal solução $[K^+] = 0.15$ mol L^{-1} e $[OH^-] = 0.15$ mol L^{-1} .

Portanto:

$$pOH = -\log [OH^{-}] = -\log 0.15 = -(-0.82) \Rightarrow pOH = 0.82$$

A 25 $^{\circ}$ C o pH e o pOH de uma solução estão relacionados de acordo com a seguinte expressão matemática: pH + pOH = 14 (a 25 $^{\circ}$ C)

Assim:

pH + 0,82 = 14 \Rightarrow pH = 14 - 0,82 \Rightarrow pH = 13,18 \Rightarrow pH de uma solução de KOH cuja concentração inicial desta base é 0,15 mol L⁻¹.

c) solução de hidróxido de cálcio 0,15 mol $L^{-1} \Rightarrow pH = ?$

Hidróxido de cálcio, Ca(OH)₂, assim como KOH é uma base forte e como tal estará totalmente dissociada em solução:

Dissociação do KOH em meio aquoso:

$$Ca(OH)_2(aq) \rightarrow Ca^{2+}(aq) + 2OH(aq)$$

$$[OH^{-}] = 2 \times (0.15 \text{ mol L}^{-1}) = 0.30 \text{ mol L}^{-1}$$

pOH = - log 0.30 = 0.52

pH + pOH = 14 (a 25 °C) \Rightarrow pH +0,52 = 14 \Rightarrow pH = 14 - 0,52 \Rightarrow pH = 13,48 \Rightarrow pH de uma solução de Ca(OH)₂ cuja concentração inicial desta base é 0,15 mol L⁻¹.

d) solução de ácido acético ($K_a = 1,75x10^{-5}$) $0,15 \text{ mol } L^{-1} \Longrightarrow pH = ?$

Ácido acético, CH₃COOH, é um ácido monoprótico, como o HNO₃, porém fraco. Embora a molécula do ácido acético apresente 4 hidrogênios, apenas um deles é ionizável, ou seja, apenas o hidrogênio do grupo carboxil (-COOH) é liberado como H⁺ quando o ácido sofre ionização.

Em solução, os ácidos fracos sofrem ionização parcial, de forma que, a maior parte do ácido existirá na forma molecular ou não ionizada, uma pequena fração estará ionizada e as formas molecular e ionizada estarão em equilíbrio. Portanto, para ionização do ácido acético ou etanoico, teremos:

$$CH_3COOH(aq) + H_2O(l) \leftrightarrow H_3O^+(aq) + CH_3COO^-(aq)$$

Neste caso a concentração hidrogeniônica em solução não é numericamente igual à concentração inicial do ácido e deverá ser calculada a partir da constante de ionização K_a para o ácido em questão e da concentração inicial do mesmo.

 \mathbf{K}_{a} : é uma constante de equilíbrio, cujo valor serve como indicação do quão fraco é determinado ácido. Para um mesmo ácido, \mathbf{K}_{a} poderá assumir diferentes valores, dependendo da temperatura. Quanto menor o valor do \mathbf{K}_{a} , mais fraco é o ácido em questão.

Para o ácido acético, tem-se que:

$$K_a = \frac{[CH_3COO^-] \cdot [H_3O^+]}{[CH_3COOH]} = 1,75 \times 10^{-5}$$
 a 25 °C

Supondo ser x mol L⁻¹ a concentração do ácido acético que sofre ionização, quando o equilíbrio químico for atingido, isto é, quando a velocidade do processo direto iguala-se a velocidade do processo inverso e, em função disso, as concentrações das espécies químicas envolvidas na reação ser tornam constantes, teremos:

$$[\mathbf{H}_3\mathbf{O}^+] = \mathbf{x} \bmod \mathbf{L}^{-1}$$

$$[CH_3COO^-] = x \mod L^{-1}$$

$$[CH_3COOH] = (0.15 - x) \text{ mol } L^{-1}$$

Substituindo as concentrações presentes no equilíbrio na expressão de K_a, teremos:

$$\begin{split} K_{a} &= \frac{x \cdot x}{(0,15-x)} \Rightarrow \frac{x^{2}}{(0,15-x)} = 1,75 \times 10^{-5} \Rightarrow x^{2} = 1,75 \times 10^{-5} \times (0,15-x) \Rightarrow x^{2} = 2,62 \times 10^{-6} - 1,75 \times 10^{-5} x \\ x^{2} + 1,75 \times 10^{-5} x - 2,62 \times 10^{-6} = 0 \\ \Delta &= b^{2} - 4 \cdot a \cdot c \\ \Delta &= (1,75 \times 10^{-5})^{2} - 4 \cdot 1 \cdot (-2,62 \times 10^{-6}) = 3,06 \times 10^{-10} + 1,05 \times 10^{-5} = 1,05 \times 10^{-5} \\ x &= \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-1,75 \times 10^{-5} \pm \sqrt{1,05 \times 10^{-5}}}{2 \cdot 1} = \frac{-1,75 \times 10^{-5} \pm 3,24 \times 10^{-3}}{2} \\ x &= \frac{-1,75 \times 10^{-5} + 3,24 \times 10^{-3}}{2} \Rightarrow x = 1,61 \times 10^{-3} \end{split}$$

Portanto:

$$[H_3O^+] = x \text{ mol } L^{-1} = 1,61 \times 10^{-3} \text{ mol } L^{-1}$$

$$[CH_3COO^{-}] = x \text{ mol } L^{-1} = 1,61 \times 10^{-3} \text{ mol } L^{-1}$$

$$[CH_3COOH] = (0.15 - x) \text{ mol } L^{-1} = (0.15 - 1.61 \times 10^{-3}) = 0.148 \text{ mol } L^{-1}$$

Se pH = - log [H₃O⁺] e [H₃O⁺] = 1,61×10⁻³ mol L⁻¹ \Rightarrow pH = - log 1,61×10⁻³ \Rightarrow pH = 2,79 \Rightarrow pH de uma solução de CH₃COOH cuja concentração inicial deste ácido é 0,15 mol L⁻¹.

e) solução de amônia (
$$K_b = 1,75 \times 10^{-5}$$
) $0,15 \text{ mol } L^{-1} \Rightarrow pH = ?$

Amônia, NH₃, é uma base fraca. Em solução, as bases fracas sofrem ionização parcial, de forma que, a maior parte da base existirá na forma molecular ou não ionizada, uma pequena fração estará ionizada e as formas molecular e ionizada estarão em equilíbrio. Portanto, para ionização da amônia, teremos:

Equilíbrio de ionização:

$$NH_3(aq) + H_2O(1) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

Neste caso a concentração do íon OH^- em solução não é numericamente igual à concentração inicial da base e deverá ser calculada a partir da constante de ionização K_b para a base em questão e da concentração inicial da mesma.

 \mathbf{K}_{b} : é uma constante de equilíbrio, cujo valor serve como indicação do quão fraca é determinada base. Para uma mesma base, \mathbf{K}_{b} poderá assumir diferentes valores, dependendo da temperatura. Quanto menor o valor do \mathbf{K}_{b} , mais fraca é a base em questão.

Para a amônia, tem-se que:

$$K_b = \frac{[NH_4^+] \cdot [OH^-]}{[NH_3]} = 1,75 \times 10^{-5}$$
 a 25 °C

Supondo ser x mol L^{-1} a concentração de amônia que sofre ionização, quando o equilíbrio químico for atingido, isto é, quando a velocidade do processo direto iguala-se a velocidade do processo inverso e, em função disso, as concentrações das espécies químicas envolvidas na reação ser tornam constantes, teremos:

$$[NH_3] = (0.15 - x) \text{ mol } L^{-1}$$

$$[NH_4^+] = x \text{ mol } L^{-1}$$

$$[OH^{-}] = x \text{ mol } L^{-1}$$

Substituindo as concentrações presentes no equilíbrio na expressão de K_b, teremos:

$$K_{b} = \frac{x \cdot x}{(0,15-x)} \Rightarrow \frac{x^{2}}{(0,15-x)} = 1,75 \times 10^{-5} \Rightarrow x^{2} = 1,75 \times 10^{-5} \times (0,15-x) \Rightarrow x^{2} = 2,62 \times 10^{-6} - 1,75 \times 10^{-5} x$$

$$x^{2} + 1,75 \times 10^{-5} x - 2,62 \times 10^{-6} = 0$$

$$\Delta = b^{2} - 4 \cdot a \cdot c$$

$$\Delta = (1,75 \times 10^{-5})^{2} - 4 \cdot 1 \cdot (-2,62 \times 10^{-6}) = 3,06 \times 10^{-10} + 1,05 \times 10^{-5} = 1,05 \times 10^{-5}$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-1,75 \times 10^{-5} \pm \sqrt{1,05 \times 10^{-5}}}{2 \cdot 1} = \frac{-1,75 \times 10^{-5} \pm 3,24 \times 10^{-3}}{2}$$

$$x = \frac{-1,75 \times 10^{-5} + 3,24 \times 10^{-3}}{2} = \frac{3,22 \times 10^{-3}}{2} \Rightarrow x = 1,61 \times 10^{-3}$$

Portanto:

$$[OH^{-}] = x \text{ mol } L^{-1} = 1,61 \times 10^{-3} \text{ mol } L^{-1}$$

$$[NH_4^+] = x \text{ mol } L^{-1} = 1,61 \times 10^{-3} \text{ mol } L^{-1}$$

$$[NH_3] = (0.15 - x) \text{ mol } L^{-1} = (0.15 - 1.61 \times 10^{-3}) = 0.148 \text{ mol } L^{-1}$$

Se pOH =
$$-\log$$
 [OH] e [OH] = 1.61×10^{-3} mol L⁻¹ \Rightarrow pOH = $-\log$ 1.61×10^{-3} \Rightarrow pOH = 2.79 pH + pOH = 14 (a 25 °C) \Rightarrow pH +2.79 = 14 \Rightarrow pH = 14 - 2.79 \Rightarrow pH = 11.21 pH de uma solução de NH₃ cuja concentração inicial deste ácido é 0.15 mol L⁻¹.

- 2. Para as soluções listadas no exercício 1, calcule a concentração molar:
- a) do íon hidróxido nas soluções dos itens a e d;
- b) do íon hidrônio nas soluções dos itens b, c e e.

Resolução:

a) É possível calcular o pOH de cada solução a partir do seu pH, visto que, pH + pOH = 14 (a 25 °C) e sabendo o valor do pOH calcula-se a concentração molar do íon hidróxido, OH⁻, uma vez que: [OH⁻] = 10^{-pOH}.

Outra possibilidade para a resolução deste item é calcular a concentração do íon hidróxido a partir da concentração hidrogeniônica, substituindo-se esta última no produto iônico da água $(K_w = [H_3O^+] \times [OH^-]$, sendo $K_w = 1.0 \times 10^{-14}$, a 25 °C).

 $\textbf{Exercício 1. Item a. } Solução \ de \ HNO_3 \ 0,15 \ mol \ L^{-1}; \ [H_3O^+] = 0,15 \ mol \ L^{-1} \ e \ pH = 0,82.$

$$pH + pOH = 14 (a 25 \, ^{\circ}C) \implies 0.82 + pOH = 14 \implies pOH = 14 - 0.82 \implies pOH = 13.18$$

 $[OH^{-}] = 10^{-pOH} \implies [OH^{-}] = 10^{-13,18} = 6,6 \times 10^{-14} \text{ mol } L^{-1} \text{ (Obs.: para realizar a operação que resultou neste valor final use a função } \mathbf{10}^{x} \text{ da calculadora científica)}.$

 \mathbf{OU}

$$K_{w} = [H_{3}O^{+}] \times [OH^{-}]$$

 $1,0 \times 10^{-14} = [H_{3}O^{+}] \times [OH^{-}]$
 $1,0 \times 10^{-14} = 0,15 [OH^{-}]$

$$[OH^-] = \frac{1,0 \times 10^{-14}}{0,15}$$

$$[OH^{-}] = 6.7 \times 10^{-14} \text{ mol/L}$$

Exercício 1. Item d. Solução de $CH_3COOH\ 0,15\ mol\ L^{-1};\ [H_3O^+] = 1,61 \times 10^{-3}\ mol\ L^{-1}\ e\ pH = 2,79.$ $pH + pOH = 14\ (a\ 25\ ^{o}C)\ \Rightarrow\ 2,79 + pOH = 14\ \Rightarrow\ pOH = 14 - 2,79\ \Rightarrow\ pOH = 11,21$ $[OH^{-}] = 10^{-pOH} \implies [OH^{-}] = 10^{-11,21} = 6,2 \times 10^{-12} \text{ mol } L^{-1} \text{ (Obs.: para realizar a operação que resultou neste valor final use a função } \mathbf{10}^{x} \text{ da calculadora científica)}.$

OU

$$\begin{split} K_w &= [H_3O^+] \times [OH^-] \\ 1,0 \times 10^{-14} &= [H_3O^+] \times [OH^-] \\ 1,0 \times 10^{-14} &= 1,61 \times 10^{-3} \ [OH^-] \\ &= \frac{1,0 \times 10^{-14}}{1,61 \times 10^{-3}} \\ [OH^-] &= 6,2 \times 10^{-12} \, \text{mol} \, / \, L \end{split}$$

b) É possível calcular a concentração molar do íon hidrônio, H_3O^+ , a partir do pH de cada solução uma vez que: $[H_3O^+] = 10^{-pH}$. Outra possibilidade para a resolução deste item é calcular a concentração do íon hidrônio a partir da concentração do hidróxido, substituindo-se esta última no produto iônico da água $(K_w = [H_3O^+] \times [OH^-]$, sendo $K_w = 1.0 \times 10^{-14}$, a 25 °C).

Exercício 1. Item b. Solução de KOH 0,15 mol L^{-1} ; $[OH^{-}] = 0,15$ mol L^{-1} e pH = 13,18.

$$[H_3O^+] = 10^{-pH} \implies [H_3O^+] = 10^{-13,18} \implies \overline{[H_3O^+]} = 6.6 \times 10^{-14} \text{ mol } L^{-1}$$

 \mathbf{OU}

$$\begin{split} K_w &= [H_3O^+] \times [OH^-] \\ 1,0 \times 10^{-14} &= [H_3O^+] \times [OH^-] \\ 1,0 \times 10^{-14} &= 0,15 \ [H_3O^+] \\ [H_3O^+] &= \frac{1,0 \times 10^{-14}}{0,15} \\ [H_3O^+] &= 6,7 \times 10^{-14} \ mol/L \end{split}$$

Exercício 1. Item c. Solução de $Ca(OH)_2$ 0,15 mol L^{-1} ; $[OH^{-}] = 0,30$ mol L^{-1} e pH = 13,48.

$$[H_3O^+] = 10^{-pH} \implies [H_3O^+] = 10^{-13,48} \implies [H_3O^+] = 3,3 \times 10^{-14} \text{ mol } L^{-1}$$

Exercício 1. Item e. Solução de NH_3 0,15 mol L^{-1} ; $[OH^-] = 1,61 \times 10^{-3}$ mol L^{-1} e pH = 11,21.

$$[H_3O^+] = 10^{-pH} \implies [H_3O^+] = 10^{-11,21} \implies [H_3O^+] = 6.2 \times 10^{-12} \text{ mol } L^{-1}$$

Solução	C_{i}	$[\mathbf{H_3O^+}]$	pН	[OH ⁻]	рОН	Classificação
	mol L ⁻¹	mol L ⁻¹		mol L ⁻¹		da solução
HNO ₃	0,15	0,15	0,82	6,6×10 ⁻¹⁴	13,18	Ácida
CH ₃ COOH	0,15	$1,61\times10^{-3}$	2,79	$6,2\times10^{-12}$	11,21	Ácida
KOH	0,15	$6,6\times10^{-14}$	13,18	0,15	0,82	Básica
$Ca(OH)_2$	0,15	$3,3\times10^{-14}$	13,48	0,30	0,52	Básica
NH_3	0,15	$6,2\times10^{-12}$	11,21	1,61×10 ⁻³	2,79	Básica

C_i: concentração inicial do ácido ou base na solução.

- Nas soluções ácidas há predominância de H_3O^+ em detrimento de OH^- , isto é, $[H_3O^+] > [OH^-]$ e $pH_{solução} < 7$.
- Em soluções básicas ou alcalinas há predominância do OH^- em detrimento do H_3O^+ , isto é, $[H_3O^+] < [OH^-]$ e $pH_{solução} > 7$.
- Em soluções neutras há quantidades equimolares de H_3O^+ e OH_7 , isto é, $[H_3O^+] = [OH^-]$ e pH = 7, visto que a 25 °C, em meio neutro, assim como, em água pura $[H_3O^+] = [OH^-] = 1,0 \times 10^{-7}$ mol L^{-1} .

 Calcule o grau ou porcentagem de ionização do ácido acético considerando a solução deste ácido no exercício 1.

Resolução:

Grau ou percentual de ionização de um eletrólito, $\alpha \Rightarrow \alpha = \frac{x}{C_i} \times 100$

x: concentração molar do eletrólito (ácido ou base) ionizado;

C_i: concentração molar inicial do eletrólito (ácido ou base).

$$\alpha_{\text{CH3COOH}} = \frac{1,61 \times 10^{-3}}{0,15} \times 100 = 1,1\%$$

Solução	Ci	x	α	Natureza do
	mol L ⁻¹	mol L ⁻¹	(%)	Eletrólito
HNO ₃	0,15	0,15	100	Forte
CH ₃ COOH	0,15	$1,61\times10^{-3}$	1,1	Fraco
KOH	0,15	0,15	100	Forte
$Ca(OH)_2$	0,15	0,15	100	Forte
NH_3	0,15	$1,61\times10^{-3}$	1,1	Fraco

Eletrólito: qualquer espécie química capaz de produzir íons seja por ionização ou por dissociação.