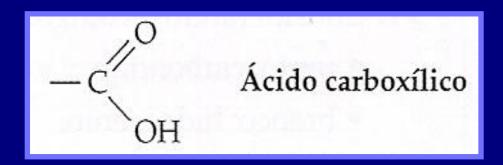
FCAV/UNESP

DISCIPLINA:


Química Orgânica

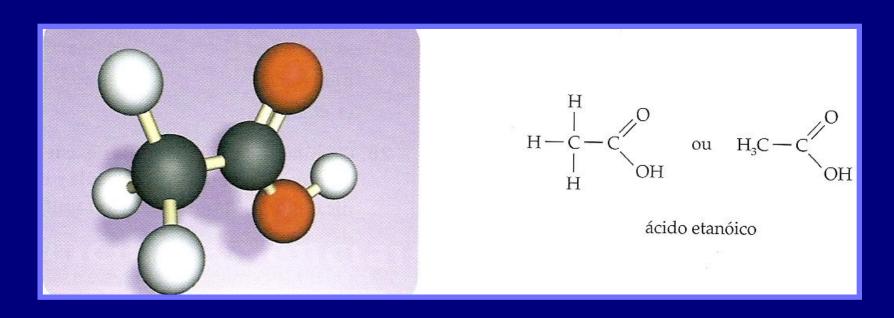
ASSUNTO:

Ácidos Carboxílicos e Ésteres Prof^a. Dr^a. Luciana Maria Saran

CLASSE FUNCIONAL ÁCIDO CARBOXÍLICO

✓ Os compostos desta classe têm em comum a presença do grupo funcional — COOH.

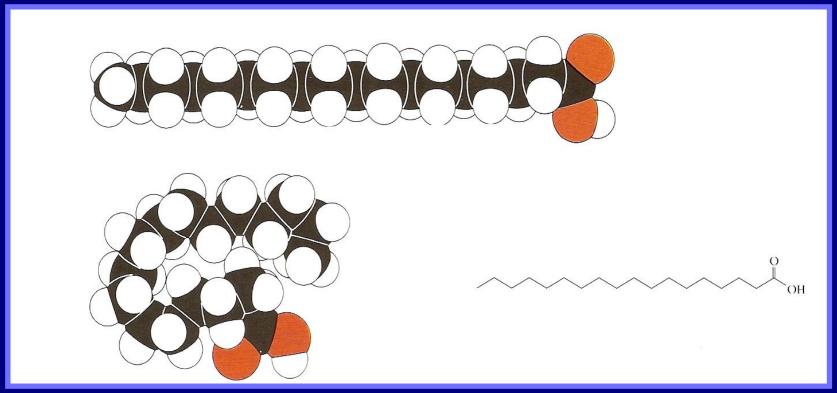
Ácidos Carboxílicos e Derivados


Quadro 13.1 Fórmulas gerais de derivados de ácidos carboxílicos*

CABITO 1911 1 Officials de del trades de del cos car soximess		
Grupo funcional	Fórmula geral	
Ácido carboxílico	R-C-OH	
Haleto de acila	R-C-X $X = F, Cl, Br$	
Anidrido de ácido	$ \begin{array}{ccc} O & O \\ II & II \\ R-C-O-C-R \end{array} $	
Amida	$ \begin{array}{c} O\\II\\R-C-NH_2 \end{array} $	
Éster	$ \begin{array}{c} O\\R-C-OR' \end{array} $	
Nitrila	R-C≡N	
Sal de ácido carboxílico	R-C-OM $M = metal$	

 $^{^{*}}$ R e R' nas estruturas acima podem ser grupos alquila e/ou arila.

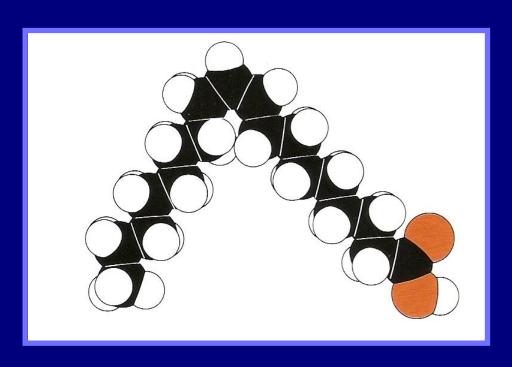
CLASSE FUNCIONAL ÁCIDO CARBOXÍLICO

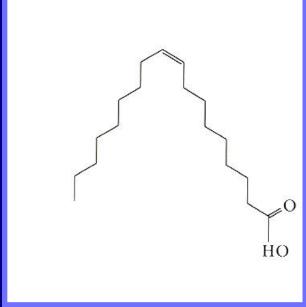

✓ Exemplo: ácido etanóico ou ácido acético.

ÁCIDOS CARBOXÍLICOS DE CADEIA LONGA

Ácidos Graxos

Ácido Esteárico (C₁₈H₃₆O₂)

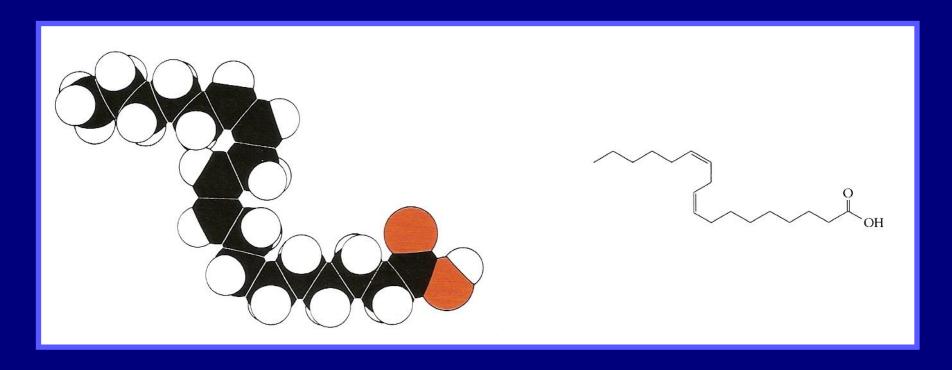




ÁCIDOS CARBOXÍLICOS DE CADEIA LONGA

Ácidos Graxos

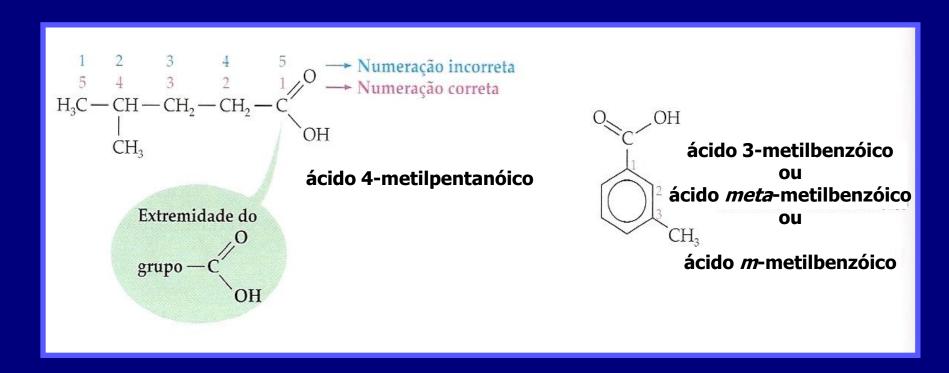
Ácido Oléico (C₁₈H₃₄O₂)



ÁCIDOS CARBOXÍLICOS DE CADEIA LONGA

Ácidos Graxos

Ácido Linoléico (C₁₈H₃₂O₂)


CLASSE FUNCIONAL ÁCIDO CARBOXÍLICO

- ✓ Nomenclatura dos ácidos carboxílicos não ramificados:
 - A nomenclatura dessa classe funcional é feita com a utilização do sufixo óico.

$$H-C$$
 ácido metanóico OH H_3C-C ácido etanóico OH ácido etanóico OH ácido benzóico OH ácido propanóico OH ácido propanóico OH

CLASSE FUNCIONAL ÁCIDO CARBOXÍLICO

✓ Nomenclatura dos ácidos carboxílicos ramificados:

NOMENCLATURA TRIVIAL ÁCIDOS CARBOXÍLICOS

$$H-C_{OH}^{O}$$

ácido fórmico

Encontrado em algumas formigas, responsável pelo ardor da picada. Fórmico: do latim formica, que significa "formiga".

$$H_3C-C$$
OH

ácido acético

É o responsável pelo aroma e sabor característicos do vinagre. Acético: do latim acetum, que quer dizer "vinagre".

NOMENCLATURA TRIVIAL ÁCIDOS CARBOXÍLICOS

$$H_3C-CH_2-C$$
OH

ácido propiônico

Presente, combinado, na gordura de certos animais. Propiônico: do grego *pro*, "precursor", e *pyon*, "gordura".

$$H_3C + CH_2 + C$$
OH

ácido butírico

Encontrado na manteiga, combinado com outras substâncias. Butírico: do grego boutyron, "manteiga".

Grupos ACIL(A)

CH₃CO-CH₃[CH₂]₃CO--OC[CH₂]₃CO-

Etanoil(a) ou acetil(a)

Pentanoil(a)

Pentanodioil(a)

Ácidos Carboxílicos e Derivados

Quadro I3.2	lomes de alguns ácidos e grupo	os acila correspondentes ³
-------------	--------------------------------	---------------------------------------

Ácido	os.	Grupos acila			
Nome sistemático	Nome trivial	Nome trivial	Fórmula		
Ácidos monocarboxílicos alifáticos saturados					
Metanóico*	Fórmico	Formil	HCO-		
Etanóico*	Acético	Acetil	CH ₃ CO-		
Propanóico*	Propiônico	Propionil	CH ₃ CH ₂ CO-		
Butanóico*	Butírico	Butiril	$CH_3[CH_2]_2CO-$		
2-metilpropanóico*	Isobutírico**	Isobutiril**	$(CH_3)_2CHCO-$		
Pentanóico*	Valérico	Valeril	$CH_3[CH_2]_3CO-$		
3-metilbutanóico*	Isovalérico**	Isovaleril**	$(CH_3)_2CHCH_2CO-$		
2,2-dimetilpropanóico	Piválico**	Pivaloil**	$(CH_3)_3CCO$		
Dodecanóico	Láurico**	Lauroil**	$CH_3[CH_2]_{10}CO-$		
Tetradecanóico	Mirístico**	Miristoil**	$CH_3[CH_2]_{12}CO-$		
Hexadecanóico	Palmítico**	Palmitoil**	$CH_3[CH_2]_{14}CO-$		
Octadecanóico	Esteárico**	Estearoil**	$CH_3[CH_2]_{16}CO$		

Ácidos Carboxílicos e Derivados

Ácidos dicarboxílicos alifáticos saturados			
Etanodióico*	Oxálico	Oxaloil	-OCCO-
Propanodióico*	Malônico	Malonil	-OCCH ₂ CO-
Butanodióico*	Succínico	Succinil	$-OC[CH_2]_2CO-$
Pentanodióico*	Glutárico	Glutaril	$-OC[CH_2]_3CO-$
Hexanodióico*	Adípico	Adipoil	$-OC[CH_2]_4CO-$
Heptanodióico	Pimélico**	Pimeloil	$-OC[CH_2]_5CO-$
Octanodióico	Subérico**	Suberoil	$-OC[CH_2]_6CO-$
Nonadióico	Azeláico**	Azelaoil	$-OC[CH_2]_7CO-$
Decanodióico	Sebácico**	Sebacoil	-OC[CH ₂] ₈ CO-

^{*}O nome trivial é normalmente preferido.

^{**} Nomes sistemáticos são recomendados para derivados formados pela substituição no carbono acílico.

Propriedades Físicas

✓ Os ácidos carboxílicos são capazes de formar ligações de hidrogênio entre si e com solventes polares como a água.

Propriedades Físicas

✓ Por serem capazes de formar ligações de hidrogênio e, ainda, por serem mais polares do que os alcoóis, os ácidos carboxílicos são mais solúveis em água do que estes últimos e apresentam temperaturas de ebulição mais elevadas que os alcoóis de massa molecular comparável.

.

Propriedades Físicas

✓ As temperaturas de ebulição dos ácidos carboxílicos alifáticos elevam-se com o aumento do nº de átomos de C e as respectivas solubilidades diminuem.

Quadro 13.3 Propriedades físicas de alguns ácidos carboxílicos saturados de cadeia linear				
	T _f /°C	T _e /°C	Solubilidade (g/100 g H ₂ O)	K _a (25 °C)
HCO ₂ H	8,4	101	∞ *	$1,77 \times 10^{-4}$
CH_3CO_2H	17,0	118	∞	$1,80 \times 10^{-5}$
CH ₃ CH ₂ COOH	-22	141	∞	$1,34 \times 10^{-5}$
CH ₃ [CH ₂] ₂ COOH	-8	164	∞	$1,54 \times 10^{-5}$
CH ₃ [CH ₂] ₃ COOH	-35	187	4,97	$1,51 \times 10^{-5}$
CH ₃ [CH ₂] ₄ COOH	-3	205	1,08	$1,43 \times 10^{-5}$
CH ₃ [CH ₂] ₅ COOH	-8	223	0,24	$1,42 \times 10^{-5}$
CH ₃ [CH ₂] ₆ COOH	17	240	0,07	$1,28 \times 10^{-5}$
CH ₃ [CH ₂] ₇ COOH	13	253	0,03	$1,09 \times 10^{-5}$
CH ₃ [CH ₂] ₈ COOH	31	270	0,02	$1,43 \times 10^{-5}$
* Solúvel em qualquer	proporção.			-

ď

Acidez de Ácidos Carboxílicos

✓ Ionizam-se parcialmente em água. Reagem rapidamente com soluções aquosas de hidróxido de sódio e bicarbonato de sódio, formando sais de ácidos carboxílicos.

RCOOH +
$$H_2O$$
 \longrightarrow RCOO⁻ + H_3O^+

COOH COONa COONa +
$$CO_{3(aq)}$$
 + CO_{2} + CO_{2} + CO_{2} + CO_{2} + CO_{2} + CO_{2} + CO_{3} COONa + CO_{3} CH₃COONa + CO_{3} COONa + CO_{3} CH₃COONa + CO_{3} CH₃COONA

w

Acidez de Ácidos Carboxílicos

✓ Os ácidos carboxílicos são ácidos fracos.

Quadro 13.4	Constantes de acidez de alguns ácidos carboxílicos		
	Ácido	K_{a}	
t . 	НСООН	1.8×10^{-4}	
	CH ₃ COOH	1.8×10^{-5}	
	ClCH ₂ COOH	$1,4 \times 10^{-3}$	
	Cl ₂ CHCOOH	$5,7 \times 10^{-2}$	
	Cl ₃ CCOOH	$2,2 \times 10^{-1}$	
	CH ₃ CH ₂ COOH	$1,3 \times 10^{-5}$	
	CH ₂ ClCH ₂ COOH	$9,0 \times 10^{-5}$	
	CH ₃ CHClCOOH	$1,3 \times 10^{-3}$	

IONIZAÇÃO DE ÁCIDOS FRACOS

De maneira geral um *ácido fraco*, como por exemplo o ácido hipotético HA, ioniza-se conforme representado abaixo:

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

Para o equilíbrio acima vale a seguinte expressão da constante de equilíbrio, K_a :

$$K_a = \frac{[H^+]x[A^-]}{[HA]}$$

 K_a é a constante de ionização do ácido. O seu valor é dependente da temperatura.

Exemplo:

Numa solução aquosa de ácido acético, CH₃COOH, um ácido fraco, temos:

$$CH_3COOH(aq) \rightarrow H^+(aq) + CH_3COO^-(aq)$$

Para a ionização do CH₃COOH é válida a seguinte expressão para o cálculo de *K*_a:

$$K_a = \frac{[H^+]x[CH_3COO^-]}{[CH_3COOH]}$$

$$K_a(CH_3COOH) = 1,75x10^{-5}$$
, a 25°C

IONIZAÇÃO DE ÁCIDOS FRACOS

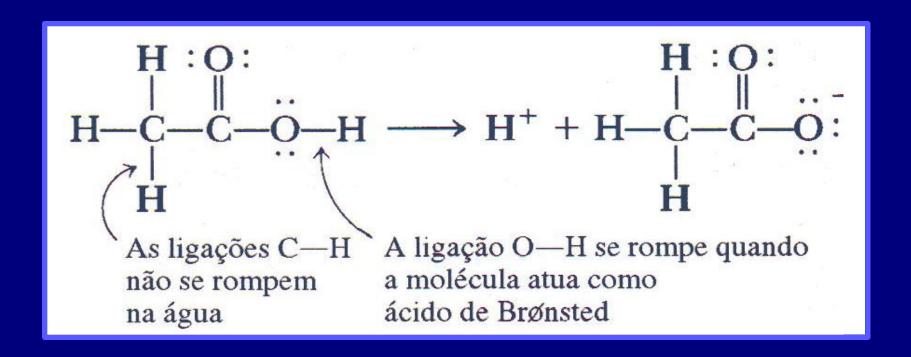
✓ Quanto menor o valor de $K_{a'}$ mais fraco é o ácido.

$$\sqrt{pK_a} = -\log K_a$$

$$\sqrt{K_a} = 10^{-pKa}$$

✓ No caso de ácidos polipróticos, ou seja, para aqueles ácidos que apresentam mais de um hidrogênio ionizável, a ionização ocorre em etapas e para cada etapa há uma constante de equilíbrio.

Força do Ácido Aumenta

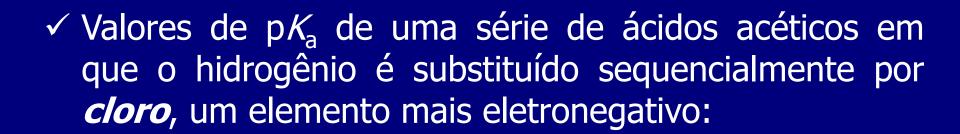

Ácido propanóico	Ácido acético	Ácido fórmico
CH ₃ CH ₂ CO ₂ H	CH ₃ CO ₂ H	HCO ₂ H
$K_{\rm a} = 1.3 \times 10^{-5}$	$K_{\rm a} = 1.8 \times 10^{-5}$	$K_{\rm a} = 1.8 \times 10^{-4}$
$pK_a = 4,89$	$pK_a = 4,74$	$pK_a = 3,74$

pK_a aumenta

w

IONIZAÇÃO DOS ÁCIDOS CARBOXÍLICOS

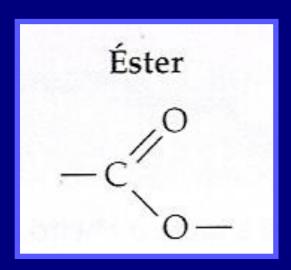
Exemplo: ionização do ácido etanóico

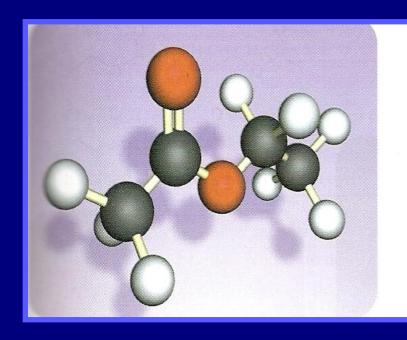


-

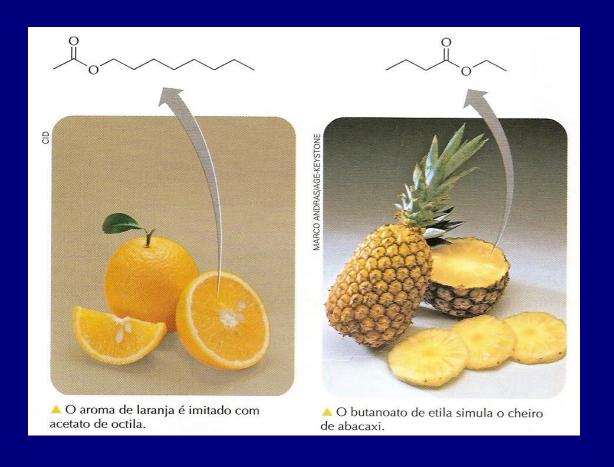
✓ Os ácidos carboxílicos simples, RCO₂H, em que R é um grupo alquila, não diferem muito quanto a força.

Exemplo: ácido acético, p
$$K_a = 4,74$$
 e ácido propanóico, p $K_a = 4,89$

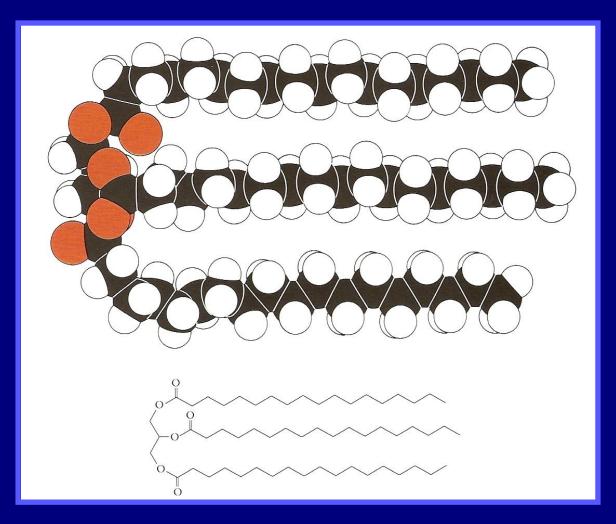

✓ A acidez dos ácidos carboxílicos é aumentada quando substituintes eletronegativos (Cl, Br, NO₂, etc.) substituem os hidrogênios do grupo alquila.


Ácido	p <i>K</i> _a
CH ₃ CO ₂ H, ácido acético	4,74
CICH ₂ CO ₂ H, ácido cloroacético	2,85
Cl ₂ CHCO ₂ H, ácido dicloroacético	1,49
Cl ₃ CCO ₂ H, ácido tricloroacético	0,70

Acidez Crescente

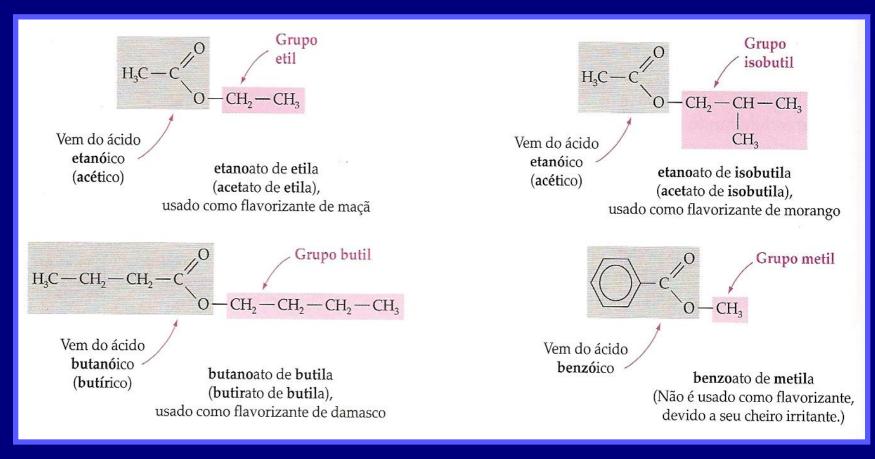

✓ Grupo funcional característico desta classe de compostos:

✓ Exemplo: etanoato de etila ou acetato de etila.



✓ Os ésteres são comumente empregados como flavorizantes em balas e doces.

Triestearina (C₅₇H₁₁₀O₆)


✓ Nomenclatura:

$$H_3C-C$$
 $O-H$
 $Substituindo$
 H_3C-C
 $O-CH_2-CH_3$
 $Substituindo$
 $Substituind$

20

CLASSE FUNCIONAL ÉSTER

✓ Nomenclatura:

2

ÉSTERES

Preparação:

A reação geral de um álcool com um ácido é ilustrada pela seguinte equação (onde R e R' podem ser grupos alquila iguais ou diferentes):

$$\begin{array}{c} RCOOH + R'OH & \Longrightarrow RCOOR' + H_2O \\ \text{\'acido} & \text{\'alcool} & \text{\'ester} & \text{\'agua} \\ \\ CH_3 - C - OH + HOCH_3 & \Longrightarrow CH_3 - C - O - CH_3 + H_2O \\ \text{\'acido} & \text{\'alcool} & \text{\'ester} & \text{\'agua} \\ \\ \\ O \\ C - OH + HOCH_2CH_2CH_3 & \Longrightarrow C - O - CH_2CH_2CH_3 + H_2O \\ \text{\'acido} & \text{\'alcool} & \text{\'ester} \\ \end{array}$$

e.

ÉSTERES

Hidrólise Ácida

✓ A reação de ésteres com água, catalisada por um ácido forte (por ex., HCl) resulta na formação de uma molécula de ácido carboxílico e outra de álcool.

ÉSTERES

Hidrólise Básica (saponificação)

$$CH_3COOCH_3 + NaOH_{(aq)} \xrightarrow{\Delta} CH_3-C-ONa + CH_3OH$$

✓ Essa reação é chamada de saponificação, porque, quando realizada com ésteres de ácidos graxos (ácidos de cadeia longa), leva à formação de sabão (sais de ácidos graxos).

Sabões e Detergentes Reação de Saponificação

✓ O aquecimento de gordura animal ou óleo vegetal (ambos ésteres do glicerol com ácidos graxos) com base resulta na reação de hidrólise denominada saponificação.

✓ São sais de ácidos graxos. Ex.: estearato de sódio.

- ✓ Têm uma cadeia longa pouco polar ou lipofílica. Já o grupo carboxilato é muito polar e,portanto, hidrofílico.
- ✓ São solúveis tanto em gordura quanto em água.

.

Sabões

✓ Quando o sabão é colocado em contato com a água, forma-se uma dispersão coloidal constituída por agregados denominados *micelas*.

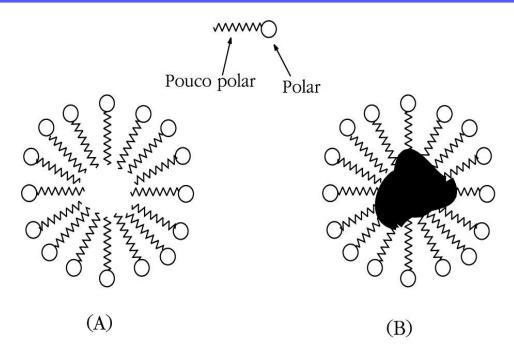
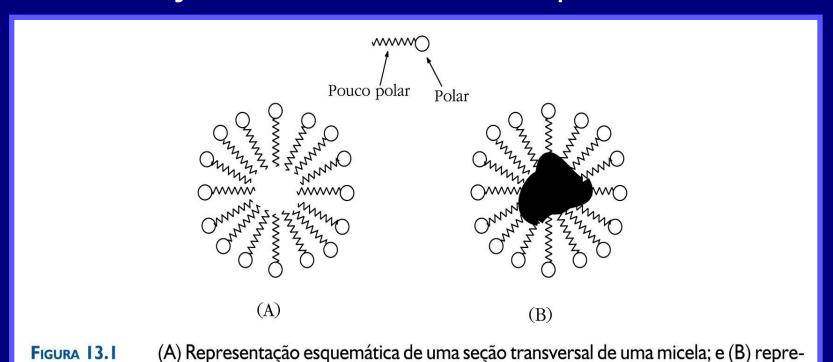



FIGURA 13.1 (A) Representação esquemática de uma seção transversal de uma micela; e (B) representação de uma gota de óleo dissolvida no interior de uma micela.

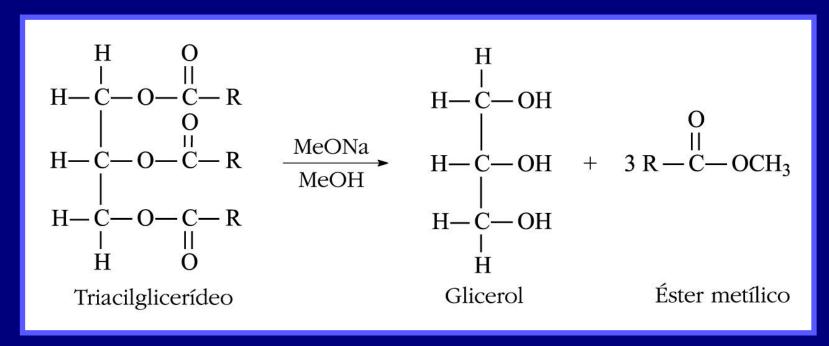
Sabões

✓ A superfície interna da micela é pouco polar e dissolve gorduras e outros compostos pouco polares. Já a superfície externa é muito polar, o que possibilita a solubilização do sabão em meio aquoso.

sentação de uma gota de óleo dissolvida no interior de uma micela.

Detergentes Sintéticos

✓ Também possuem cadeia longa de carbonos (lipofílica) e uma extremidade polar (hidrofílica).


✓ Enquanto os sabões de ácidos graxos são insolúveis em águas duras, os detergentes sintéticos podem ser usados mesmo em águas duras.

w

ÉSTERES

Reação de Transesterificação

✓ Os ésteres reagem com metóxido de sódio (MeONa) em metanol, produzindo um éster metílico. Esta reação é conhecida como *transesterificação*.

ÉSTERES

Reação de Transesterificação

✓ Aplicação Importante: produção de biodiesel.

✓ **Biodiesel:** éster de ácido graxo, obtido comumente a partir da reação química de óleos vegetais ou gordura animal, com um álcool na presença de um catalisador.

Reação de Transesterificação (Produção de Biodiesel)

Figura 1. A reação de transesterificação. R representa uma mistura de várias cadeias de ácidos graxos. O álcool empregado para a produção de biodiesel é geralmente o metanol (R' = CH₃).

Reação de Transesterificação (Produção de Biodiesel)

BARBOSA, L. C. de. **Introdução à Química Orgânica**. São Paulo:Prentice Hall, 2004. 311 p.

UCKO, A. D. **Química para as Ciências da Saúde: uma introdução à química geral, orgânica e biológica**. São Paulo: Manole, 1992. 646 p.