Efeito da pulverização de 2,4-D com diferentes pontas de pulverização em condições meteorológicas adversas

<u>Cassio Henrique Pereira Nogueira</u>¹, Ricardo Jardim de Paula¹, Willians Luiz Bueno de Souza², Marcelo da Costa Ferreira².

Resumo - Uma pulverização inadequada pode causar como consequência a deriva. O objetivo desse trabalho foi avaliar a eficácia de controle de corda-de-viola com o herbicida 2,4-D com pontas de pulverização TT 110015 e AI 110015 em diferentes condições meteorológicas. O experimento foi conduzido na área do Departamento de Fitossanidade da UNESP, Câmpus de Jaboticabal-SP. A espécie de planta daninha *Ipomoea hederifolia* foi determinada como alvo de aplicação e para espécies não-alvo, foram selecionadas espécies de citros, pau-brasil e pimenta-americana. O delineamento experimental foi o inteiramente casualizado, com quatro repetições. Foi estudado o herbicida 2,4-D na dosagem de 1340 g e.a. ha⁻¹, sob três condições de pulverização em horários considerados adversos, sendo as duas primeiras no final do período da manhã, com as pontas TT 110015 e AI 110015 e uma no período da tarde, com a ponta AI 110015. As plantas não-alvo foram dispostas em duas distâncias do ponto de aplicação: 15 m e 23 m, ambas com 4 repetições para cada espécie.O herbicida 2,4-D na dosagem testada demonstrou eficácia no controle de *Ipomoea hederifolia*. Paras as condições desse experimento nenhum dos fatores interferiram para causar injúrias às plantas não-alvo ou para a redução de controle de *Ipomoea hederifolia*.

Palavras-chave: *Ipomoea hederifolia*, pontas de pulverização, deriva, culturas adjacentes.

Introdução

Uma pulverização inadequada pode causar como consequência, além de níveis insatisfatórios de controle, perda de produto através da deriva, a qual é considerada umas das principais formas de perda do produto aplicado. Caracteriza-se como deriva tudo aquilo que não atinge o alvo, gerando prejuízo financeiro, contaminações ambientais, danos à saúde do aplicador e também a culturas adjacentes (MATUO,1990).

A seleção adequada das pontas de pulverização é de fundamental importância para a precisão e segurança na aplicação de produtos fitossanitários sendo o fator principal determinante da quantidade aplicada por área, da uniformidade de aplicação, da cobertura obtida e do risco potencial de deriva. Pontas antideriva dotadas de pré-orifício alteraram o espectro de gotas pulverizadas, aumentando-lhes o diâmetro e diminuindo a percentagem daquelas gotas propensas à ação dos ventos, constituindo-se, portanto, em fator auxiliar para redução da deriva nas pulverizações (CUNHA et al., 2003).

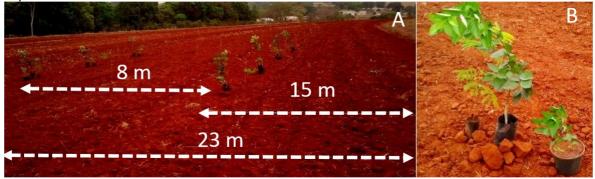
Portanto, o objetivo desse trabalho foi avaliar a eficácia de controle de corda-de-viola com o herbicida 2,4-D com pontas de pulverização TT 110015 e Al 110015 em diferentes condições meteorológicas.

Material e Métodos

O experimento foi conduzido na área do Departamento de Fitossanidade da UNESP, Câmpus de Jaboticabal-SP. A espécie de planta daninha corda-de-viola *Ipomoea hederifolia* foi determinada como alvo de aplicação e para espécies não-alvo foram selecionadas espécies de citros, pau-brasil e pimenta-americana.

O delineamento experimental foi o inteiramente casualizado, em esquema fatorial 3 x 2, com quatro repetições. Foi estudado o herbicida 2,4-D na dosagem de 1340 g e.a. ha⁻¹ sob três condições de pulverizações em horários considerados adversos, sendo duas aplicações no final do período da manhã, com as pontas TT 110015 e Al 110015, e uma no período da tarde, com a ponta Al 110015. As plantas não-alvo foram dispostas em duas distâncias do ponto de

194


Organização:

¹Mestrando em Agronomia, Produção Vegetal, FCAV/UNESP, nogueirachp@gmail.com; ricardo.jpaula@gmail.com

²Doutorando em Agronomia, Ciências do solo, FCAV/UNESP, williansbueno@gmail.com

³ Professor Adjunto, FCAV/UNESP, Jaboticabal, mdacosta@fcav.unesp.br

aplicação: 15 m e 23 m (Figura 1). Testemunhas sem aplicação foram mantidas para cada espécie.

Figura 1. Local de aplicação. Em A) Distâncias parciais e total de plantas não-alvo do ponto de aplicação. Em B) Disposição das plantas não-alvo.

Cada unidade experimental da planta daninha foi constituída por um vaso plástico com capacidade para 3,5L de solo. Como substrato foi utilizada a mistura solo, areia e composto orgânico, na proporção 3:1:1, respectivamente. O fundo dos vasos foi vedado com folha de jornal para evitar a perda de solo. As plântulas de corda-de-viola foram transplantadas de bandejas, e mantiveram-se guatro plantas por vaso.

Para as plantas não-alvo, foram selecionadas mudas de citros (copa variedade Valência e porta enxerto *Citrumelo Swingle*), mudas de pau-brasil (*Caesalpinia echinata*), e pimenta-americana (hibrído dirce R), sendo este transplantado e mantido duas plantas em vasos de 3,5 L nas mesmas condições da planta alvo (Figura 2).

Figura 2. Espécie alvo e não-alvo. Em A) *Ipomoea hederifolia*. Em B) Pimenta-americana (híbrido dirce-R).

O herbicida foi aplicado com o auxílio de pulverizador costal à pressão constante mantida por CO_2 comprimido com 4,08 kgf cm⁻² de pressão, munido de barra com seis pontas, espaçadas em 0,5 m, com consumo de calda equivalente a 150 L ha⁻¹.

No momento da aplicação, as plantas de corda-de-viola tinham entre 4 a 5 folhas, e em média 7 cm de altura. As plantas não-alvo apresentavam em média, 69 folhas e 93 de altura; 55 cm, 8 pinas e 5 pares de folíolos; e 14 folhas e 19 cm de altura, para citros, pau-brasil e pimenta-americana, respectivamente. As condições meteorológicas do momento da aplicação de cada condição encontram-se na Tabela 1.

Tabela 1. Horários e condições meteorológicas da aplicação do herbicida.

	<u> </u>	3 1		
Pontas de	Horários	Temperatura	Umidade do	Picos de velocidade
pulverização		(°C)	ar	do vento (km/ha)
			(%)	
1.TT 110015	10:30	34,3	28	12,67
2. Al 110015	11:17	32,0	28	9,60
3. AI 110015	15:29	32,0	30	2,00

Após a aplicação do herbicida, as plantas alvo e não-alvo foram conduzidas para casa-de-vegetação para posteriores avaliações visuais. As notas de controle de planta daninha e fitointoxicação de espécies não-alvo foi realizada em 7, 14, 21 dias após a aplicação (DAA), segundo o critério SBCPD, 1995 (adaptado de ALAM, 1974), onde a nota 1, varia de 0 a 40% de controle ou fitointoxicação; 2, entre 41 a 60%; 3, entre 61 a 70%; 4, 71 a 80%; 5, entre 81 a 90%; e 6, 91 a 100%. Aos 21 DAA, foi determinada a matéria seca da parte aérea das plantas daninhas e, aos 28 DAA, das plantas não-alvo.

Os dados de matéria seca foram submetidos a análise de variância pelo teste F e as médias foram comparados pelo teste de Tukey a 5% de probabilidade.

Resultados e Discussão

O herbicida 2,4-D na dosagem de 1340 g e.a. ha⁻¹ demonstrou eficácia de controle de *Ipomoea hederifolia*. (Tabela 2). Aos 7 DAA todas as plantas apresentaram 70% de controle. Já na avaliação subsequente, aos 14 DAA, praticamente todas as plantas estavam controladas. Aos 21 DAA, todas as plantas obtiveram 100% de controle.

Quanto a matéria seca das plantas daninhas controladas, todas diferiram da testemunha sem aplicação.O herbicida 2,4-D na dosagem de 1340 g e.a. ha⁻¹ demonstrou eficácia de controle de *Ipomoea hederifolia*.

Tabela 2. Notas e porcentagem de controle de *Ipomoea hederifolia* aos 7, 14 e 28 dias após a aplicação de 2,4-D, além da matéria seca da parte aérea ao 21 DAA.

Condições/Ponta	Dosagem	Controle (DAA)			Matéria seca
S	g ha ⁻¹	7	14	21	g vaso ⁻¹
1.TT 110015	1240	70,00 (4) ⁽¹⁾	94,75 (6)	100,00 (6)	0,75 a ⁽²⁾
2. Al 110015	1340	70,00 (4)	98,00 (6)	100,00 (6)	0,50 a
3. AI 110015		70,00 (4)	100,00 (6)	100,00 (6)	0,50 a
4. Testemunha	0,00	0,00	0,00	0,00	6,00 b
DMS					1,48

⁽¹⁾Classificação pela Escala de ALAM.

Para as espécies não-alvo, não houve qualquer efeito visual de fitointoxicação do herbicida 2,4-D, nem das pontas de pulverização seja para distância de 15 ou 23m da aplicação (Tabela 3).

Mesmo que as aplicações foram realizadas em condições não recomendadas para aplicação, com a umidade relativa do ar abaixo dos 50% e ventos acima de 6 km h⁻¹, não houve falhas no controle da corda-de-viola, a qual foi posicionada no centro da aplicação, dificultando qualquer efeito adverso.

⁽²⁾Médias seguidas da mesma letra na coluna não diferem estatisticamente entre si, pelo teste de Tukey a 5% de probabilidade.

Tabela 3. Resultados do teste F da análise de variância para matéria seca da parte aérea de plantas não-alvo, aos 28 dias após a aplicação de 2.4-D.

Fontes de	Matéria seca				
Variação	Laranja	Pau-brasil	Pimenta americana		
Condições/Pontas	0,71 ^{ns}	3,27 ^{ns}	3,51 ^{ns}		
Distância	0,98 ^{ns}	1,56 ^{ns}	1,86 ^{ns}		
Herb. x Dist.	0,54 ^{ns}	0,52 ^{ns}	1,24 ^{ns}		
CV (%)	15,14	23,90	35,33		

ns Não significativo pelo teste F da análise de variância.

Diferentes variáveis contribuem para a deriva de pulverização. Isto se deve, predominante, ao sistema do equipamento de pulverização e a fatores meteorológicos. Nesse experimento, tanto a umidade como temperatura não estavam de acordo com a recomendação. Em temperaturas ambiente acima de 25°C e com baixa umidade relativa, as gotas finas têm especial tendência à deriva devido aos efeitos da evaporação. No entanto, o principal fator que afeta a deriva é a velocidade do vento.

Nas duas primeiras condições, com a aplicação realizadas no final do período da manhã, houve a incidência de altas velocidades do vento. Pontas do tipo TT, apresentam diâmetro mediano volumétrico (DMV) menores do que 100 µm, indicando maior risco potencial de deriva, devido à presença de gotas menores, ao contrário da ponta com indução de ar Al, que apresentam gotas grossas (GRIGOLLI et al., 2011). No entanto, a utilização de pontas gotas grossas pode também comprometer o controle da planta daninha (BOLLER; MACHRY, 2007).

Paras as condições desse experimento nenhum dos fatores interferiram negativamente seja causando injúrias às plantas não-alvo ou para a redução de controle de *Ipomoea hederifolia*. Segundo Cunha (2008) em velocidades de até 18 km h⁻¹ a deriva horizontal estende-se prioritariamente por um comprimento de até 5 metros. Possivelmente, as plantas não-alvo foram dispostas a uma distância segura da faixa de aplicação concomitante com as pontas de pulverização que evitaram o efeito da deriva nas plantas não-alvo.

Conclusões

A dosagem de 1340 g e.a. ha⁻¹ do herbicida 2,4-D controlaram *Ipomoea hederifolia*. Não houve dano as espécies de laranja, pau-brasil e pimenta-america nas condições testadas.

Referências

ALAM (1974) ASOCIACION LATINOAMERICANA DE MALEZAS. Recomendaciones sobre unificación de evaluación en ensayos de control de malezas. **ALAM**, Bogotá, v.1, n.1, p.35-8, 1974.

BOLLER, W.; MACHRY, M. Efeito da pressão de trabalho e de modelos de pontas de pulverização sobre a eficiência de herbicida de contato em soja. **Engenharia Agrícola**, v.27, n.03, p.722-727, 2007.

CUNHA, J.P.A.R; TEIXEIRA, M.M.; COURY, J.R.; FERREIRA, L.R. Avaliação de estratégias para redução da deriva de agrotóxicos em pulverizações hidráulicas. **Planta Daninha**, v.21, n.2, p.325-332, 2003.

CUNHA, J.P.A.R. Simulação da deriva de agrotóxicos em diferentes condições de pulverização. **Ciência e Agrotecnologia**, v.32, n.5, p.1616-1621. 2008.

GRIGOLLI, J.F.J.; PEREIRA, F.C.M; PEÑAHERRERA, L.C.; SANTOS, E.A.; FERREIRA, M.C. Controle de *Euphorbia heterophylla* com mesotrione e óleos paradiferentes pontas de pulverização. **Revista Brasileira de Herbicidas**, v.10, n.3, p.266-276, 2011.

MATUO, T. **Técnicas de aplicação de defensivos agrícolas**. Jaboticabal: Funep, 139 p.